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ABSTRACT

Alternate integral forms for the cumulative probability distribution in terms of
the characteristic function are given, In particular, forms that can utilize a fast
Fourier transform (FFT) algorithm and special forms for one-sided probability deu-
sity functions are derived, For a special class of discrete random variables, all
integral evaluations are over a finite range, Some computational aspects of uti-
lizing the FFT are discussed,
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ALTERNATE FORMS AND COMPUTATIONAL CONSIDERATIONS FOR
NUMERICAL EVALUATION OF CUMULATIVE PROBABILITY DISTRIBUTIONS
DIRECTLY FROM CHARACTERISTIC FUNCTIONS

1. INTRODUCTION

A recent report [1] on numerical evaluation of cumulative probability dis-
tribution functions directly from characteristic functions (QF) gave the cumula-
tive distribution functions (CDF) in terms of a single integral on the CF for both
continuous and discrete random variables (RV). In this report some alternate
forms for the CDF in terms of the CF will be presented, with an aim toward
more accurate, efficient, and expeditious calculations. For the motivation of
this study and utility of the results, as well as numerical examples, see Ref-
erence 1.

2, ANALYSIS

This section is composed of five subsections. In the first, general dis-
tributions are considered; in the second, specialization to a nonnegative random
variable is made. In both subsections, forms that utilize a fast Fourier trans-
form (FFT) are derived and their applicability is discussed, In the third and
fourth subsections, discrete random variables are considered. The former
subsection shows that the distribution function can be evaluated entirely in
terms of finite integrals; the latter subsection specializes to nonnegative dis-
crete random variables. The fifth subsection treats some computational
aspects of the FFT.

2.1 GENERAL DISTRIBUTIONS

Let RV x have probability density function (PDF) p{(x) and CF f{(¢):

10 = [ ax expex) pe0 i
pix) = 3z [dk expleie) 200 . @




(Integrals without limits are over the real axis from - to o .) The

CDF Pr{X) is defined as the probability that RV x is less than or equal to X.
The modified distribution function (MDF) PX) is defined equal to Pr(X) at
points of continuity, but it takes a value midway between limit valuea on either
side of a discontinuity.

The MDF P(X) can be obtained from the CF by [1, Eq. (7), or 2, Eq.
4.14)]

- %f% Im {f(s) exp(-1£X) } all X . ®)

D

PX) =

If we attempt to remove the Imaginary operation from under the integral sign,
we obtain an infinite integral since £(0)= 1. However, if we express

£(¢6) = [£&) - a(®)] + a®) , )

where a(0) =1, and split (3) into two integrals, we can move the Imaginary
operation out of the first integral in (3). One particularly useful choice for
a(f), which results in a closed form expression for the second integral in (3),is

8,0 = e[t - 2 7], £>0, ®

where* 4 and ¢ are the mean and variance of RV x. The mean and vari-
ance are available from f'(0) and f"(0), if these quantities can be evaluated; if
not, the method to be described is still applicable with arbitrary constants used
for » and ¢2. When (4) and (5) are substituted into (3), there results [3, Eq.
3.896 4; integrate both sides with respect to b)

X - 1 ‘(9 - .'1“)
PX) = e(——,,—%- tim ] fat—— epeixip, wx, @
0

*Actually, ¥ and 2 could be nlni!acd artbitrery values in the form ($); this
particular choice gives a secondworder fit to f({) at the origia:




where

o) = _/ aten ™2 expt?/2) M
~o0

is the Gaussian CDF.
Equation (6) is now in a form where an FFT can be utilized in the integra-
tionon ¢ (Sece Subsection 2.5). This equation is exact; we are not making a

Gaussian approximation in (6). There is no problem in the integration at ¢ = 0
because, for the choice v, , 232 .2 as the mean and variance of RV x,

0 -0 ‘
———=O(F) a8t — 0+, ®

Also, since |a, ol!an decays as exp(~s2§2/2), the decay of the left side of (8)
for large ¢ w&l depend on the decay of f(£)/:; this decay will dictate how
far the integral in (8) must be carried out for specified accuracy in P(X).

Other choices for a(f) are possible and sometimes recommended. For
example, if the mean and variance of RV x do not exist (e.g., p(x)==-1.
Q +x4)~1, all x), we might choose

‘3(9 = exp(~bé), €>0, ®)
To best matoh (f) near the arigin, we could chooss
b= £'0H = |PON| ssuming P04 real) . (10)
Then by substitaing (&) sad () tzto @ [3, Ka. 3.941 ), we got |

f1(e) ~ 8, @)
Pﬁ)'l lmM)-lh {fu—-—-—.—’—m-m}. all X.
| ay




For the choice of b in (10),

() - 8,(6)
———=0( as {0+, (12)

80 no problem in integration arises at the origin. We must be able t» evaluate
f'(0+) in this case 80 that b is known, and it must be real. In cases where

§ f'(*» is 10t known or 1s infinite (See Appendix A, for example), the above

f methods are inapplicable, and special techniques such as subtracting out the

‘ singularity are required.

2.2 NONNEGATIVE DISTRIBUTIONS

When RV x is limiiad to nonnegative values, some simplifications in the
general form (3) vccur. (The case of nonpositive RV x can be treated in a
similar fashion.) First, if X <0 in (3), then PX)=0, Letting X = -a ylelds

1
-2}, 2 a[. %’t [1.(€) sin@é) + £,(6) cos@t)], a >0 , as)

where subscripts r and i denote real and imaginary parts, respectively.
Employing (13) in (3) for X >0, we get

«»
Pm-éaf%‘_t‘.w sin@x), X >0, a4

mn-%[%qwmm. x>0, as

Thus, the MDF P{X) can be evaluated from knowledge of sithet the real part
of the imaginary part of the CF (). For X =0, neither (14) nor (15) is
necossarily valid, and we must resort to (3).




There are computational reasons for choosing (14) over (15), or vice
versa. The first has to do with ease of calculating f.(¢) versus f;(¢). For
example, in Appendix A, for p(x)=2/r (1 +x2)=1 for x>0, we find that
f.(¢) is a simple exponential, whereas f;(f) is a sum of exponential integrals.
Converse examples, where f;(¢) is simpler to compute, can also be found.

1
The second reason has to do with the rate of decay of fp(¢) versus f;(¢).
We have

£ = f dx ptx) oos(ex) = f[dx p g conten) = f ax p ) expitn) , @6

© = f dx pex) singex) = [ ox p @) sinex) = 1 fax p ) emitn),
~an

where subscripts e and o denote even and odd parts, respoctively. Now, if
PO+ >0, then p,(x) is discontinuous at the origin, and f;({) decays cnly as
§=1 for large ¢ . An example is :

p=e, x>0 fE)= @ -18"",
£ (1 + e’)". ® = 5(1 + e’)"‘ . a8)

In (18), f(f) decaysas {3 forlarge £, giving rise to an integral in (14)
that oan be terminated earlier than the one in (15). On the other hand, consider
that p(0OH) = 0 and that pix) and its derivative are continous excopt at the
ovigin, but p'(0H > 0. Then poix) and its derivative are countinuous, whersas
Po(x) is discontinuous. In this case, fp(f) Cacays only as {3 for largw §.
An example is

) e xe™, x>0 t e -0,

(o= (1-€) (e qoeu(ed)t an |




F%

Here (15) could be terminated earlier than (14).

The third reason has to do with the region of X of interest. For largs X,
where P®) is near unity, Eq. (15), in the form

1-PX) = "fT f.(¢) cos(¢X), X >0, 20)

is to be rccommended, since it i3 an alternating sum of small quantities and re-
tains significance. Equation (34), for large X, is an alternating sum of large
quantities and i~sus significance. But for small X, Eq. (14) would be recom-
i mended.

3 Equation (15) can be immediately manipulated into a form where an FFT i
can be utilized, Namely,

2 { S A0
PX)=1-7Re d¢ T exp(-ieX)} X>0. (21)
Q

From Appendix A, we have fj()/t~u, as §—0, if u, exists and is finite.

If we attempt to express (14) in the form

dl
Im { 3 ¥ ") exp(iiX)}

we obtain an integral that does not converge at the origin. However, if we ex-
press

%m=[gm-bw]+u9. (22)

where b(0)=1 and b(¢) is real, then (i4) becomes




PX) =3 Im at S exp(ifX)} + 7 J d¢ b(§) F X>0,
[+] Q
(23)

and an FFT can be used on the first integral, Preferably, the second integral
should be integrable in closed form. A particularly useful choice is

b(e) = exp(— 3 nzf”‘). >0, @4)

where* ug is the mean-square value of RV x. This quantity is available from
fy(0) if it can be evaluated. When (24) is substituted into (23), we get (See (3)

“theough (7))

X 2 * LE - e"p(’ % “2‘2)
PX) = 2"’(17‘2)‘ 1+2m {fde : exp(iEX)}, X>0.
“2 Q (25)

The function

fr(i) - exp(— % n2£2

51 >—-Oas£—-0+

in (25) if the mean-square value u, exists. Ininany cases, it decays as
fr(s)/s for large £.

The fact that MDF P(X) can be obtained from either the real or imaginary
parts of the CF for a nonnegative distribution are manifestations of the fact that
f.(¢) and fj({) can be found from each other; in fact, they are related by Hil-
bert transforms. For p{()=0 for x <0, and no impulses at the origin, we
see that [4, p. 38]

*As in the footnote to Eq. (5), Mg could bs assigned any convenient value.




1) = [ ax pe expien) = [ ax pin) Ute) expaix) = 3{pd Veo}

= 3{pe} @ 3{UE} = 10 @ [% i@ + ;f;g] = [1@ + wizel]

(26)

where U¢x) is the unit step function, 3 denotes a Fourier transform, @
denotes convolution, and ¥ denotes a Hilbert transform. Therefore,

f(¢) = 1% {fp} , @n

or
1@ =¥t @ £.0 =¥ {{e} . @8)

For the cases when p(x) contains an impulse at the origin of area ¢, the
first part of 28) is still correct, but the second part is incorrect by the addi-
tive constant c,. However, we can still find f,(§) from fj() by utilizing the
fact that f£.(0) = 1. Thus, either the real or the imaginary part of the CF con-
stitutes complete knowledge about the MDF in the case of a nonnegative dis-
tribution.

2.3 DISCRETE DISTRIBUTIONS

In this subsection, the RV x is restricted to take on values that are mul-
tiples of some fundamental increment 4, and can be either positive or nega-
tive. Although the equations in Subsection 2.2 are applicable here, it is advan-
tageous to have forms for the distribution function that require finite integrals
rather than infinite ones. We have for the PDF

p(x) =Eck éx - ka) , (29)
k




where the sum ranges from -« to «, The CDF Pr(M) for integer M is
given in Reference 1, Eqs. (20) through (26). All the integrals are finite inte-
grals except for the one in (2C) for MDF value P{0):

f(€)
P(0)=—-1_[d£

We now rectify this situation and obtain a finite integral for P(0) also.
From Reference 1, Eq. (15),

x/A
-4 i »
K = or :_/'l/A d¢ £(8) exp(-ikAf) . (30)

Therefore, by using Appendix B and f(-£) = £*(¢), we get

1 x/A 1
Yoo = [ e Y epaxan
k=—o0 I’/ K= -0
g
=4 i - PN/
3 ,__/;/Adf_ £(¢) [ 2 +w;a(A£ k2r) + i 2 cot 2)]
1 1 .14 b At
= -'2'c°+-é-+15-2-; '-/1:-,6 d¢ f(¢) cot(z)
1)
i + i i
=-2%*3 f * EmED &

Then, we obtain the desired result




-1

L1 .1 4 f'/A 5@
P‘°’-Z °% t2 % =2 T 2r % oniai) (32)
k=wow
As £ — 0+, the integrand of (32) approaches 2uy/A if uy exists and is
finite. (There is no integral expression for P(0) in terms of f.(£). Since fn(¢)
is the Fourier transform of Pe (x) (See Eq. (16)), and since
0

fdx P () = %.

-00

irrespective of the form of p(x), f.(¢) contains no information about P(0).
This is analogous to the general distribution case where P(0) follows from
(3) as

po =2-3fa gk )
0o

2.4 NONNEGATIVE DISCRETE DISTRISV'TIONS

When RV x is limited to nonnegative values, i CDF Pr(M) takes on
forms requiring either the real or imaginary parts of the CF for its evaluation,
just as in Subsection 2.2, To see this, we note that ¢ in (25; s zero for
k<0, Byletting k= -m in (30), we get

/A r/A
f d¢ sin(maAé) fi(s) = f dé cos(mAé) fr(s) form >0, (33)
0 [

When we employ (33) into (30) for k>0, we get

x/A
o =2 a/ dt coskA®) 1,9, k >0, (34)

10




or

- 24 f dé sinkag) £,(6), k>0, (35)
0

Therefore, the CDF Pr(M) for integer M is given by

Pr(M) =§ ck = ..2;9..-/‘ d¢ fr(f)[';' +i cos(kAf‘{l

k=0 o k=1

(36)

where we have used (34), (30), the fact that f(-¢) = f*({), and Eq. 1.342 2 in

Reference 3, Equation (36) enables evaluating the CDF in terms of the real
part of the CF alone.

To represent Pr(M) in terms of fj({), /e first note that for nonnegutive
RV, the general formula for P(0) in (32) becomes

f (E)
PO =3 % = 3 f & S (at/z) ta.n(AE/z) ©7

Now,

M 2 ™
Peg = ) o =0 +3r [ de e tsmame)

k=0 k=1

11




/A
A
=1-:defi(£)

where we have employed (35), (37), and Eq. 1,342 1 in Reference 3. Equation . d
(38) is complementary to (36) in the sense that only the imaginary part of the
CF is necessary for evaluating the CDF. The reasouns given in Subsection 2,2
for selecting (36) or (38) in a particular application are again relevant.

2.5 USE OF FFT FOR FOURIER TRANSFORMS

Many of the integrals in this report take the form
f dt g(t) exp(-i2xft) .
Suppose a limit T on the integration can be found such that

| f dt g(t) exp(-i2xft) |< ¢ for all f, (39)
T

where ¢ is some specified tolerance or error. Then, attention can be focused
on evaluating

G () = f dt gtt) exp(-i2stt) . (40)

Since the integration in (40) is over an interval of length T, it is seen that
in(f) will undergo a significant change in value in an interval no smaller than
1/T in f. Thus, one might initially anticipate that (40) should be evaluated at
values of {=n/T, n=1, 2,.... However, in many cases, this resolution,
1/T, may be much too fine, and be the result of satisfying (39) with a very
small ¢, In such cases, values of Gp(f) at some multiple of the fundamental




resolution may be satisfactory, say m/T, where m is an integer. Thus, we
might be interested only in evaluating GT (n% ) ,n=1, 2, .... Butfrom (40)

GT(n,%“) = O/T dt gt) exp(-i2xnmt/T)

m-1  (k+1)T/m
dt gt) exp(-i2xnmt/T). (41)

k=0 kT/m

In making the substitution u=t - kT/m in (4]) and defining the collapsed
- function

m-1 T
g(u +k;), 0Su<T/m

gc(u) =1 k=0 ’ (42)

0 , otherwise
we note that (41) becomes
'/m
Gng-‘/]dug(u)exp-izrnu (43)
™\ T) ) T/m ) *

The collapsed function is obtained from g by "'pre-aliasing" g into the
interval T/m. I we e the Fourier transform of g, as

/m
Go(f) - f du Sc(“) exp(-i2rfu) , (44)

then (43) yields




m\ _ m
GT(n 'r) G, (n 'r)‘ (45)

That is, Gp(f) canbe evaluated at f=m/T, 2m/T,..., interms of the
Fourier transform of the collapsed function,

Now suppose g,(u) is sampled at increments of h in (44), where
T/m

h==4r » and weighting {wy} applied to the samples in an effort to approxi-
mate* (44), That is,
G = hf w, g (h) exp(-i2etkh) = & 0 . 46)
k=0

The approximation in (46) will be good if g, and the exponential are sam-
pled frequently enough. Thus, if the exponential is not to vary by more than a
radian between samples, we require

1
<33 - “"

When (45) through (47) are combined, the desired values are given by

W RERTEN )

k=0
T
1
i B<o= or m<i¥, 49)
By defining

*For example, Simpson’s rule has “ws 1/3, "3t * 4/3, il * 2/3. " =1/

14




'The factor 1/r in the upper bound on |n| in (49) is due to the aliasing in

‘Gy(f). In order to avoid this aliasing, we must observe (49).

!mkzc(kh). 1sksM-1

dk = '] (50)

bw, 8,(0) + bw,, g (T/m), k=0

we can express (48) as

M-1

GT(n %‘-) - Gc(n -?—) 3 ec(n %) - E dk exp(-i2vrkn/M) , (51)

k=0
which is an M~-point discrete Fourier transform (DFT) of the sequence {dk

frequency domain that takes place at |n|= M/2. Infact, letting {wy} be the
samples of waveform w() at t=kh and W{f) its Fourier transform, it can
be shown that (Appendix C)

om-wmog (f m——) (52)

Thus, the vatoe &,(F ) is composed of at least two overlapping talls of

To summarize, the values of Gp() at t-n are given approximately
uml—pdntbﬂln(&l)dthemm&}mw) When (43) is substi-
tuted into (30), this sequence can be

hkg.(th-r)g). %Sksu-l
e S B o)

As is obvious from (53), g) must atill be evaluated from 0 to T in inore-
ments of h, that is, at mM + 1 values. However, collapsing reduces the

(83)




size of the FFT from mM to M, with an attendant reduction in computation
time and round-off error. This method is related to one given in Refer-
ence 5, p. 81,

In applying this technique to numerical integration of CF's, since the ex-
ponentials take the form exp(+i{X), we note that the increment in X at which
values are obtained by employing an FFT are 2x/T, or 2rm/T for coarser
resolution as above,

3. CONCLUSIONS

Several alternate forms for direct numerical evaluation of the CDF or
MDF from the CF have been presented that have utility in different situations,
including ease of calculation, rate of decay of the integrands, and the probabil-
ity region of interest. Also, the speed of the FFT and the large number of
values of the distribution functions that are quickly availsble make the formulas
presented attractive in a large number of practical applications.

In the case of discrete distributions with RV that can iake on positive as
well as negative values, all integrals for the CDF are finite and over a half-
period of the CF. Reevaluation of the sines or cosines, as in (36) or (38) for
different values of M, can be avoided if one notes that

ol 4] ]

with a similar result for cosine, Thus, if a tabls of sin(a) and cos(a) for the
values of a (Af) is constructud, this recurrence relation cen be used to obtain

the higher order M-dependence required in (36) and (38) without reevaluating
sines and cosines.
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Appendix A

BEHAVIOR OF INTEGRAND OF EQ. (3) AT ORIGIN

The integrand of (3) i8 given by

£ cos(tX) £.{&) sinX)

1y p(-itx)} = -
7 Im {£(5) exp(-i£X)} - T

‘where subscripts r and i denote real and imaginary parts, respectively.
~Now, : e ‘

£ singX) |
~———— —X 28 £ —~ 0+,
£ S
And
f.(5) cos(EX) .
i = [ gy BinEx;
F — f dx % p(x) cos{{X) .

~f_dx X pix) = by ag ¢ ~ 0+ if My exists and-isﬁnite,,

Here My is the mean of RV x. Therefore, the mtegrand of (3) apnroaches
b =X as £ —~ 0+ if #, exists and is finite.

An example where u, is infinite is given by

0, x<90

px) = .
2/x 3 x>0

1l+x

19




Al

Then,
fr(f) = exP('ISD ’
£,6) = sgn(t) = fexpi=|&]) Ei(¢]) - exp(lE]) Ei- ¢} .
SinceAz

Bi-1¢) = 1n 18 +C - |&] + 51817 +0(e1®) astel ~ o,

B8 =1In J¢] +C + 18 +5 1612 #0081 as jg — 0,
there follows

£,(€) = sgn(f) ;'2; [l -In |E]+1 - C +% I£lz)+ 0(|£| 3);

2,1 -
,sm(m) as |€] ~ 0.

Therefore,

£,(€) cos(tX) , 1
-—T——.~;ln(|—“-) as |¢|—~0,

which is unbounded, but integrable. 8o, in those cases where u, is infinite,
the behavior of fj(¢)/¢ at the origin must be handled carefully in order to
accurately evaluate the integral, One possibility is to subtract out the singu-
larity and integrate it analytically.

Alg, s, Gradshteya and I. M. Ry:zhik, Table of Integrals, Series und Products,
Academic Press, New York, 1955, Eq. (3.728 1},

A21hid., Eqs. (8.214 1) and (8.214 2).

20




Appendix B

o0
EVALUATION OF Zexp(iux)
n=1

Consider the ordinary function

fix) = 1n|sm %l, X # 0, 42r, +4r, ...,

Since (1 + xz)"1 f(x) is absolutely integrable from -« to «, the generalized
function f{x) corresponding to ordinary function f(x) can be defined, Bl In
fact, the generalized function f(x) equals the ordinary function f(x) (See defi~

_ nition 8 by LighthillB2), Furthermore, the generalized function f(x) is peri-
odic, with period 2r,B3 and, therefore, can be expressed asB4

The generalized function f(x) is absolutely integrable over a period, since
the ordinary function f(x) is absolutely integrable over a period.BS There-
fore, the coefficients {cn} in the expansion of the generalized function f(x)
are given byB6

cn=—-fdx‘(x) fdxlnlsm- ~lox

r 1/2
= %: f dx ln(sin "25) cos(nx) = 2 / dt In(sinxt) cos(nat)
[}

Bly, g, Lighthill, An Introduction to Fourier Analysis and Generslized Functions,
Cambridge University Press, New York, 1950, p. 21, delinition 7.

Birpid, p. 25.

B31pid, p. 60, definition 22.
Bdipid, p. 66, Theorem 26.
BSrpid, p. 48, definition 19,
lebid, p. 66, Theorem 26, Note.
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-In2, n=0

1
- E];;i, n#0

where we have used Eq. (4.384 3) by Gradshteyn and Ryzhik,B7 Therefore, the
generalized function ln |sin(x/2)| can be expressed as

o0
In lsin§'|=-ln2-!" z sgnf) inx
2 2 n
Ni=~-00

n#o

If we define the derivative of the generalized function In|sin(x/2)] as the
generalized function cot(x/2)/2, differentiation of the last equation yields the
expression of the generalized function cot(x/2)/2 asB8

'l'cot§=-il y sgn(n)
2 “H3 223‘“ e
n=—o

(This equation says that the spectrum of the generalized function cot(x/2) is
the odd impulse train,B9) And sinceB10

2 1 ™ imx
Lg §x - n2x) = E; e
n=-—0 n=—co
we obtain
[~ 00
1 X 1 inx
e 30 o - nze) 1§ oofE) 2 24 o,
n=—co n=1
B’l. S, Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products,

Academic Press, New York, 1965.
Bo,. cit., M. J. Lighthill, p. 28, Theorem 15,
B9rbid., p. 66, Theorem 26, Ea. (36).

Blolbid., p. 67, Example 38.
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or

v inx _ 1 1 f
ie --2+1r i:s(x-an)+xzcot(z)

n=] n=—o0

in the sense of generalized functions.,
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Appendix C

ALIASED SPECTRUM

If we define the infinite impulse train

5, ) =Za(t - nh)
n

and use the time-limited character of g,, as given in (42), it is possible to
manipulate (46) as follows:

M
Gc(f) =h ; w, 8 (kh) exp(-i2rfih)
T
= f dt w(t) g @) h 4 () exp(-i2nt)
0]
= f dt wet) g () b & () exp(-i2ntt

=3 {wt) g, ) h )} = WD @ G (O3, M

- W) OZGO(I - k ;1)-)
R

Using h= %E . we see that (52) results.
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